Step of Proof: comp_nat_ind_a
9,38
postcript
pdf
Inference at
*
1
1
2
I
of proof for Lemma
comp
nat
ind
a
:
1.
P
:
{k}
2.
i
:
. (
j
:
. (
j
<
i
)
P
(
j
))
P
(
i
)
3.
4.
j
:
5.
s
:
. (
s
< (
j
- 1))
P
(
s
)
6.
s
:
7.
s
<
j
P
(
s
)
latex
by ((% Establish desired induction hyp %
Assert
t
:
. (
t
<
s
)
P
(
t
))
A
CollapseTHEN (IfLabL
ACol
[`main`,OnHyps [7;5;4;3] Thin % cleanup %
AC
;`assertion`,((((RepD)
A
CollapseTHENM (InstHyp [
t
AC
] 5))
)
A
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n)) (first_tok :t
AC
) inil_term)))
]))
latex
AC
1
:
AC1:
3.
s
:
AC1:
4.
t
:
. (
t
<
s
)
P
(
t
)
AC1:
P
(
s
)
AC
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
,
,
Lemmas
nat
wf
origin